Black smoke - your car is broken

Clerk Cycle 1879 6 Day Cycle Four-stroke engine (Otto cycle) Six-stroke engine By type of ignition Compression-ignition engine Spark-ignition engine (commo

Dodane: 14-09-2016 08:06
Black smoke - your car is broken reduce smoke Infiniti



There are several possible ways to classify internal combustion engines.


By number of strokes

Two-stroke engine

Clerk Cycle 1879 6
Day Cycle

Four-stroke engine (Otto cycle)
Six-stroke engine

By type of ignition

Compression-ignition engine
Spark-ignition engine (commonly found as gasoline engines)

By mechanical/thermodynamical cycle (these 2 cycles do not encompass all reciprocating engines, and are infrequently used):

Atkinson cycle
Miller cycle


Wankel engine

Continuous combustion:

Gas turbine
Jet engine

Rocket engine

The following jet engine types are also gas turbines types:



In a forced (also called pressurized)

In 2-stroke crankcase scavenged engines, the interior of the crankcase, and therefore the crankshaft, connecting rod and bottom of the pistons are sprayed by the 2-stroke oil in the air-fuel-oil mixture which is then burned along with the fuel. The valve train may be contained in a compartment flooded with lubricant so that no oil pump is required.

In a splash lubrication system no oil pump is used. Instead the crankshaft dips into the oil in the sump and due to its high speed, it splashes the crankshaft, connecting rods and bottom of the pistons. The connecting rod big end caps may have an attached scoop to enhance this effect. The valve train may also be sealed in a flooded compartment, or open to the crankshaft in a way that it receives splashed oil and allows it to drain back to the sump. Splash lubrication is common for small 4-stroke engines.

In a forced (also called pressurized) lubrication system, lubrication is accomplished in a closed loop which carries motor oil to the surfaces serviced by the system and then returns the oil to a reservoir. The auxiliary equipment of an engine is typically not serviced by this loop; for instance, an alternator may use ball bearings sealed with its lubricant. The reservoir for the oil is usually the sump, and when this is the case, it is called a wet sump system. When there is a different oil reservoir the crankcase still catches it, but it is continuously drained by a dedicated pump; this is called a dry sump system.


Historical design

Historical design

Dugald Clerk developed the first two cycle engine in 1879. It used a separate cylinder which functioned as a pump in order to transfer the fuel mixture to the cylinder.6

In 1899 John Day simplified Clerk's design into the type of 2 cycle engine that is very widely used today.13 Day cycle engines are crankcase scavenged and port timed. The crankcase and the part of the cylinder below the exhaust port is used as a pump. The operation of the Day cycle engine begins when the crankshaft is turned so that the piston moves from BDC upward (toward the head) creating a vacuum in the crankcase/cylinder area. The carburetor then feeds the fuel mixture into the crankcase through a reed valve or a rotary disk valve (driven by the engine). There are cast in ducts from the crankcase to the port in the cylinder to provide for intake and another from the exhausst port to the exhaust pipe. The height of the port in relationship to the length of the cylinder is called the "port timing."

On the first upstroke of the engine there would be no fuel inducted into the cylinder as the crankcase was empty. On the downstroke the piston now compresses the fuel mix, which has lubricated the piston in the cylinder and the bearings due to the fuel mix having oil added to it. As the piston moves downward is first uncovers the exhaust, but on the first stroke there is no burnt fuel to exhaust. As the piston moves downward further, it uncovers the intake port which has a duct that runs to the crankcase. Since the fuel mix in the crankcase is under pressure the mix moves through the duct and into the cylinder.

Because there is no obstruction in the cylinder of the fuel to move directly out of the exhaust port prior to the piston rising far enough to close the port, early engines used a high domed piston to slow down the flow of fuel. Later the fuel was "resonated" back into the cylinder using an expansion chamber design. When the piston rose close to TDC a spark ignites the fuel. As the piston is driven downward with power it first uncovers the exhaust port where the burned fuel is expelled under high pressure and then the intake port where the process has been completed and will keep repeating.

Later engines used a type of porting devised by the Deutz company to improve performance. It was called the Schnurle Reverse Flow system. DKW licensed this design for all their motorcycles. Their DKW RT 125 was one of the first motor vehicles to achieve over 100 mpg as a result.14